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ABSTRACT

}
~ The hypercube is a good host graph for the embedding of
networks of processors because of its low degree and low
diameter. Graphs such as trees and arrays can be embedded
into a hypercube with smal. dilation and expansion costs,
but there are classes of graphs which can be embedded into
a hypercube only with large expansion cost or large dila-

tion cost.
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1. Introduction

\\:/In the study of parallel computing, networks of processors

e
-

are often organized into va{iggf configurations such as trees,
pyramids, and mesh arrays [1-11i\ These configurations can be
represented as graphs. Using the properties and structures of
the underlying graph effectively, the computation and communica-
tion speeds can often be improved. ’ -
A hypercube of degree d has Zd nodes and each node has |
exactly d neighbors. The distance between any two nodes is
less than or equal to d. Both the diameter of the hypercube
and the degree of the nodes grow very slowly (logarithmically)
with respect to the number of nodes in the hypercube. There-
fore, the hypercube is a good configuration for networks of
processors. ‘
This paper studies the mapping of different network con-
figurations into a hypercube network. In other words, it
studies the one-to-one assocation of the processors of a net-
work with the processors of a hypercube network and the costs
of such mappings. The costs considered are the distances of
images of adjacent processors and the size of the hypercube
with respect to the number of processors in the given network.
The process can be viewed as embedding of a graph (the under-
lying structure of the network) into a hypercube and the dila-
tion and expansion costs of the embedding [12,13]. Graph embedding
problems have applications in a wide variety of computational situ-
ations [13-18]. Embedding of graphs into trees and some issues

of graph embedding have been studied by Rosenberg et al. in [13,19-21].




.....

In this paper, the host graph in the embedding is always a

K hypercube. Section 2 defines and discusses some of the
LW,

gﬁg basic properties of hypercubes and graph embeddings. The
te¥d

P

rest of the paper discusses embedding of trees and graphs

in hypercubes.
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2. Hypercubes and graph embeddings

A hypercube of degree 4 has 2d nodes and each node has d
neighbors. The distance between any two nodes is less than
or equal to d. The nodes in a hypercube may be labelled with
binary numbers of length d. Two nodes ajaz...ag and byb,...by

are adjacent to each other if and only if I |a;-b,|=1.
i=1

A degree d+1 hypercube Cd+l can be viewed as two degree d
hypercubes OCd and 1Cd such that every node Oalaz...ad in OCd
is adjacent to one and only one node lalaz...ad in lcd. Equi-~
valently, given two degree d hypercubes, they can be combined
into a degree d+1 hypercube by making the appropriate connec-
tions. Moreover, we can specify how the two hypercubes are to
be combined as long as the conditions specified are consistent
in the sense that it is possible to relabel one of the hyper-
cubes so that all the neighbor relations are preserved. This
is the same as applying a sequence of rigid transformations
of rotations and reflections to a hypercube. For example, one
can specifywhich node in 1Cd is to become the neighbor of the
node A in OCd and also how the neighbors of A are to be mapped
into neighbors of this node in 1Cd.

Another property of the hypercube which is useful in later
sections is that it is Hamiltonian. This can easily be proved
by induction and using the fact that Cd+1 is obtained from two
Cd's with the appropriate connections.

An embedding f of a graph G=(V,E) in a graph G'=(V',E') is
a one-to-one function f: V+V', The cost of an embedding f is

max{distance(f(a),£(B))| (A,B)€E}, i.e., the largest distance in
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o G' between the images of neighboring nodes of G. An embedding
is said to preserve adjacency if its cost is 1. 1In the termi-
nology of Rosenberg et al. [13] this is called the dilation

cost. The expansion cost is the ratio of the number of nodes

in V to the number of nodes in V'. Whenever no confusion
can arise, we will refer to f as a function from G to G', and

the image of a node A of G in G' will simply be identified as

the node A in G'.
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3. Embedding of binary trees in hypercubes

B We first consider a complete binary tree where each non-

leaf node has two children. A complete binary tree T4 of

height d has 2d-1 nodes. The smallest hypercube large enough

ots to house Ta is of degree d. However, this embedding of Td
s

gg%{ into C4 cannot preserve adjacency.

{‘ A% %

Lo

Proposition l: A complete binary tree of height d=2 cannot

be embedded in a hypercube of degree =d such that adjacency
is preserved. 1In other words, a complete binary tree cannot
be embedded in a hypercube with a dilation cost of 1 and an

expansion cost less than 2.

Proof: A hypercube of degree <d has fewer nodes than Td’
hence Td cannot be embedded. Consider a mapping f of nodes

Tq into a hypercube Cd of degree d. Suppose the nodes of Cd
are labeled with binary numbers between 0 and 2d as in Section
2. Without loss of generality, we may assume that the root

of T4 {(at level 0) is mapped onto node 0 in Cq- Note that if

the image of a level k node N of Td has t 1's in its label,

- the images of node N's children at level k+1 have t+l or t-1

ﬁg@ 1's in their labels. Since f(level 0 node) has no 1's in its

§§§ label, the following are true:

;éf' ) (1) f(level i node) has no more than i 1's in its label.

;{i] (2) £(odd level node) has an odd number of 1l's in its label.
%§§' ' (3) f£f(even level node) has an even number of 1's in its label.

ATNCADL I L O C 4 DR T C o .
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Case l: d is even.

The number of binary numbers of length d with an odd number

.“1 . . - *

0 of 1's is 1z (9) = 2971, The number of odd level nodes in Ty4
5 odd it

4 is 2+423+42%+...42971 = 2029.1). Bue 297L2(29-1) if and only if

d>2. This shows that if 4 is even and d>2, there are not enough

nodes in Cd with an odd number of l's in their labels to be the

images of the odd level nodes of Td.

'. Case 2: d is odd.
123
ﬁ; The number of binary numbers of length 4@ with an even number
oy of 1's is 2 ) = 2d-1, The number of even level nodes in
even i
_ a+1_ _ d+1_
T, is 20422504, 291 & 2—-3—1 . But 2¢ l<2—Tl if and only

if 4”1. This shows that if d is odd and d>1, there are not
enough nodes in Cd with an even number of 1l's in their labels to

.% be the images of the even label nodes of Ty4- i

S For d>2, there is no adjacency-preserving embedding of Td

into Cd' However, Proposition 2 will show that if we allow

s a larger hypercube (one with twice as many nodes as necessary)
,'7'&.
%i as the target graph, then there is an adjacency preserving em-
bedding of Td into it. 1In other words, there is an embedding
E
ég with a dilation cost of 1 and an expansion cost of approximately
7 . , .
}3 2. On the other hand, Proposition 3 will show that there is an
{f embedding of T4 into Cy with a dilation cost of 2 and an expan-
;é sion cost of approximately 1.
- — T oroir-i Lor i
*(x+y)r = 3 (i)x y . Let x=-~1, y=1; then we have 0= 3 %)(—l) =
i=0 i=0
r -
: -z Deand oz D= oz (D o=y oz (D o= ntE
P even i odd i even i odd i i=0
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Proposition 2: A complete binary tree T, of height d (for

d

d>0) can be embedded in a hypercube C of degree d+l1, in

d+1
such a way that the adjacencies of nodes Td are preserved.

Proof: (By induction)

Figure 1 shows how Tl’TZ' and T3 can be embedded in
C2,C3, and C4 with adjacency preserved (cost=l). Let f;:
T; ~ Ci+1 be an embedding of T into Ci+l' Suppose fd_l:
Td-l + Cq pPreserves adjacency and (Cd'fd-l) has the follow-
ing property which we will refer to as the "free-free neigh-
bor" property: R=fd_l (root of Td-l) has a free neighbor
A and A has a free neighbor B#R, i.e., {A,B}g{fd_l(N)IN a
node of Td_l}. Note that (C4,f3) has the "free-free neigh-
bor" property.

Given a complete binary tree Td of height 4, its left
subtree can be embedded by f

in 0C, of C such that

d-1 d da+1’
OL=£,_ 4 (root) has a free neighbor OA which has a free neigh-
bor 0B. The right subtree can also be embedded in a degree

d hypercube, call it C;', using £j_, such that R'=f; , (root

of right subtree) has a free neighbor A' which has a free neigh-
bor B' in Cé. We can now apply a rigid transformationT: Cé-*
1C4 such that T(R') is the neighbor of 0A in 1Cy4 and T(A') is
the neighbor of 0B in 1Cd. This is the same as forming a de-
gree d+1 hypercube from two degree d hypercubes by making sure
that they are oriented properly using rotation and reflection

so that a node (R') and its neighbor (A') in one hypercube

match two specific neighbor nodes (0A,0B) in the other

Y \'\ N ) W St J R Y "~"-' '.‘.'. OO ..n-.
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hypercube. This can always be done since d=3. Now the em-
bedding fd of Td into Cd+1 can be defined: fd(rootmade)=0A,

fylleft subtree=f, ;, f;|right subtree=T(f3_ ;). Distances

between 0A and the images of the left and right children of

the root are both 1. Moreover, the free-free neighbor pro-

perty is satisfied by (cd+1’fd) since OA has a free neighbor
0B, and OB has a free neighbor T(A'). See Figure 2. By in-
duction, the above construction shows that a complete binary
tree of height 4 (d4Z0) can be embedded in a hypercube of

s degree d+1 with adjacency preserved. |

Intuitively, the embedding is built up from the smaller sub-

trees. Each of the root's subtrees is embedded in one smaller

F hypercube, the root is mapped into a free neighbor of its left
child's image, the right subtree's image hypercube is oriented

; in such a way that the image of the right subtree's root is

& a neighbor of the root's image. The free-free neighbor pro-

perty ensures that a free neighbor is available in the embed-

L

ding of a taller tree.

e P

This embedding has the property that each subtree is em-

bedded with adjacency preserved in a hypercube which has about

& i

hN twice the number of nodes of the subtree. The above construc-

tion also does not completely restrict how the other nodes of

2 X R

the two degree d hypercubes are to be matched.

ﬁ Proposition 3: A complete binary tree Ty of height 4 (d>0) can

ﬁ be embedded in a hypercube Cd of degree d with cost = 2, i.e.,

neighbors in Tq are mapped into nodes of at most distance 2 away

in Cd'

g o, W

*




Proof: Figures la,b and Figure 3 show that Tl'TZ and T3 can

be embedded in Cl,C and C3 in this way. Suppose Td-l can

2
be embedded in C4_, by gy_; and g4_; (root of Ty_,)=A and

its left and right children are L,R; (Cy_,,94_;) has the cost
2 property, i.e., distance (A,L)=2 and distance (A,R)=1; and
(gd-l’cd-l) also has the following property which we will
refer to as the free neighbor property: the only free node in
Cq is a neighbor of the root A. Figure 3 shows that (C3,g3)
has cost 2 and the free neighbor property. We can embed Td
into Cd by first embedding the left subtree (height d-1) into

the 0C hypercube with 0A being the root and 0B being the

d-1
free neighbor of 0A, then embedding the right subtree (height

d-1l) into the 1C hypercube with 1A being the root, 1B being

da-1
the free neighbor of 1A, and OA,lA are neighbors, 0B,1B are
neighbors; finally, the root is mapped to 1B, Clearly, dis-
tance (gd(root),gd(left child))=distance(1B,0A)=2, distance
(gd(root),gd(rightchild)kl, the free node 0B is a neighbor
of the root 1B. By induction, Td can be embedded in Cd with

cost=2. !

The above construction shows that every node in Td is mapped
into a node distance 2 away from its left son's image and dis-
tance 1 away from its right son's image. We can also specify a

symmetric embedding so that for d4>3 the left and right subtrees of

Td are mapped into OCd_l and lCd in the same way so that the

nodes in the same relative position in the left and right sub-

trees of any node are neighbors of each other. More specifically,

."-.'-.‘ o.v.'-' YA "} &Y YR 'o'_'- TS TP TR RN AT AR
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we can use a string S of length i in {L,R}* to denote a label
i node (0<i<d) in Td; this string S gives the path from the
root to the node. For example, LR is a level 2 node which is
the right child of theleft child of the root. SlLS2 and SlRS2
(Sl,Sze{L,R}*) are in the same relative positions in the left
and right trees of the node denoted by Sl' and g(lesz) and
g(Slez) are neighbors of each other. See Figure 4.

Let A=a1a2...ai,B=blb2...bi be the level i nodes in Td’
aj,bje{L,R},lsjii. Suppose at positions P1SP,=...5P, (t=i)
c..a

a '#b ; then g(A)=g(a ..ai), g(al...a

pJ pj 122
b a a_a ceedy) (a;...b_...a b_a
Py P+l TP,y 1%, p, 4l R T Py ¥, =10, %,
oo a;...b_ ...b_ ...b_ ...a;)=g(B) is a path of length t

» gla; P, B, P, i)=9 P g
in the hypercube Cy- Therefore, in this embedding the distance

a_ a .
pl-l Py p1+l pl-l

ceed Y-
)

between two level i nodes is at most i.

The above propositions show how a complete binary tree can
be embedded in a hypercube without greatly increasing the dila-
tion cost or the expansion cost. If a binary tree is not com-
plete, we can first complete the tree with imaginary nodes and
then embed it in a hypercube. This in general is not economi-
cal because often a smaller hypercube can house the incomplete
binary tree.

If we are interested in an adjacency preserving embedding
of an incomplete binary tree, we can construct an embedding
using the same principles as in the proofs of Propositions 2 and 3.
We start with a leaf node at the highest level, map it into a
hypercube of degree 1, and continue to put its ancestor nodes

which hasonly one child in the same hypercube if possible. We

T Te e W T WL,




go to a larger size hypercube if needed and always try to
have the free neighbor property (as defined in the proof

of Proposition 3) satisfied (the free-free neighbor proper-
ty as defined in the proof of Proposition 2 if possible).
When we reach a node A whose parent P has another child B,
then we can try to put B's subtree in the same hypercube

if it can be done easily, say, if it has only 3 or 4 nodes;
otherwise, we embed B's tree in another hypercube, making sure
that one of A or B's embeddings satisfies the free neigbor
property (go to a higher dimensional hypercube if necessary).
Then P can be mapped into the free neighbor in the hypercube
with the free neighbor property. Of course, if one of the
cubes has the free-free neighbor property, then P should be
mapped into that cube. The free-free neighbor and the free
neighbor properties ensure that there is a free node in the
cube for the root of the taller subtree. 1In general, the
hypercube (and embedding) that results from this method is
smaller than the one obtained from completing the incomplete
binary tree. For example, a subtree which is a single branch
of length m can be embedded in a hypercube of degree llogzm]
since hypercubes are Hamiltonian. The free-neighbor property
is satisfied if the hypercube is of degree flogz(m+1)1. The
free-free neighbor property is satisfied if the cube is of

degree flogz(m+2)l.
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4. k-ary trees

A k-ary tree can be turned into a binary tree by adding

e llogzkl-l levels of nodes, i.e., at most 2[l°g2k]-2 nodes

% between a node and its k children. See Figure 5 for an

f example. A k-ary tree of height 4 becomes an equivalent

gl binary tree of height d+(d-1)(flog2kl-1) = [logzkld-llog2k1+l.
E% The number of new nodes needed is 2([l°g2k]d"l°gzk]+l)-1 -

" number of nodes in the k-ary tree. This distance between two
i% . adjacent nodes of the k-ary tree is flogzk‘ in the binary tree.
%3 This binary tree can be embedded in a hypercube as in Proposi-
v tion 3 and we have proved the following:

g

N Proposition 4: A k-ary tree K; of height d can be embedded

% in a hypercube of degree (d-l)[log2k1+1 such that the distance
. between the images of adjacent nodes of Ky is at most 2*Flog2kl.u
R

%: If the k-ary tree K; is complete and k=2" for some m then
i the equivalent binary tree (and thus the hypercube) has less

f than twice the number of nodes in Ky and the cost of the em-

'l bedding is 2flog2k‘ which is small in comparison with log2

‘E (number of nodes in Kd). Again, if the k-ary tree is not com-
n plete, we can construct the embedding using the same principle
%‘ as in the incomplete binary tree case and the images of the ima-
% ginary nodes added to form the equivalent binary tree can be used
; as images of real nodes in the k-ary tree.
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5. Graphs
A graph G with n nodes can be embedded in a hypercube of

degree llogznl by simply associating nodes of the structures
in any one-to-one fashion. This embedding uses the smallest
size hypercube needed, but the dilation cost can be as high
as flogznl. Another embedding method uses the spanning tree
of the graph.

A graph G=(V,E) of degree k and diameter 4 has a breadth-
first spanning tree S which is k-ary with height d. An edge
in E which is not an edge in S must connect only nodes in ad-
jacent levels of S by the breadth first construction. Thus
a graph can be considered as a k-ary tree with additional edges
joining nodes whose levels differ by at most one.

For any graph G, we can construct an embedding by first
constructing its breadth-first spanning tree S, extending this
k-ary tree into a binary tree T, and then embedding the binary
tree in a hypercube C using the method described in Section 3.
This hypercube has degree (d—l)flog2k1+1 and z(d-l)[log2k1+1
nodes. The cost of this embedding is (d-l)flogzkl+1, since ad-
jacent nodes in G can be mapped into two leaf nodes of T which
are distance = (height of T-1) apart.

For a graph which is a k-ary tree with each leaf node con-
necting to k other leaf nodes, the costs of the embedding re-
sulting from the above methods are almost identical and the
cost is high. However, in both of these methods, the graph
structure was not examined nor used. By examining the structure,

one can usually get better embedding schemes with smaller costs.
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For example, a 2% M array can be embedded in a hypercube of de-

gree n+m with adjacency preserved in a natural way: (a) First,
(i)

embed each row i (1=i=2") in a hypercube C
m

of degree m; this

can be done since hypercubes are Hamiltonian; (b) then combine

(23-1) (23) (3)
cm and cm m+l

cube nodes representing array nodes in the same column are con-

2k-1 2k
m+1 m+1l

again making sure that hypercube nodes representing array

(lfjizn-l) into hypercube C so that hyper-

nected; then combine C and C (1=k=2""2) into hypercube

k
Cm+2'
nodes at adjacent rows and same column are connected; continuing

in this way, a hypercube Cm results and all adjacencies are

+n
preserved (cost=l). If the embedding methods for general graphs
were used, the cost could be as high as m+n because the spanning
tree of the 2%x2™ array is of height n+m and quite skewed.

On the other hand, there are graphs that cannot be embedded
into a hypercube with adjacenéy preserved no matter how large
the hypercube is. For example, any graph which contains a cycle
with length 2i+l for some i>0 cannot have an adjacency preserv-
ing (cost=1) embedding. A complete graph of n nodes is another
example. However, we can have a cost 2 embedding if we use a
hypercube of degree n-1l. As a matter of fact, it is easy to

see that any graph with n nodes can be embedded into a hyper-

cube of degree n-1 so that adjacent nodes are mapped into nodes

distance 2 apart.




6. Concluding remarks

o o .

Etﬁ A The hypercube is a good host graph for the embedding of net-
%Wa works of processors because of its low degree and low diameter.
Ry

Graphs such as these and arrays can be embedded into a hyper-
cube with small costs. The design of the embedding mappings
makes use of the structures of these graphs. In general, there
is a trade-off between the dilation cost and the expansion cost

(the size of the host hypercube). If this size is minimal,

then the dilation cost of the embedding may be as large as
log (number of nodes in the graph). On the other hand, there
is always an embedding of an n node graph into a degree n-1

hypercube with a dilation cost of 2. We have also shown that

there are classes of graphs which cannot have adjacency pre-
serving (dilation cost=1l) embeddings into hypercubes of any

w22 size.
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The free-free-neighbor property.

In C4, A is a free neighbor of R (image of root of T, )
B is a free neighbor of A

In C,, A' is a free neighbor of R' (image of root of Té)
B' is a free neighbor of A°'.

T3 and Ti are the subtrees of T4.

In CS’ A becomes the new root of T
B is a free neighbor of A,
A' is a free neighbor of B.
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8-ary tree. I,,I,,...,I. are the nodes inserted
to convert the 8-ary tree to a binary tree.
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